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Estimates of General Mayer Graphs III: Upper Bounds 
Obtained by Means of Spanning n-Trees 
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We obtain computable upper bounds for any given Mayer graph with 
n root-points (or n-graph). These are products of integrals of the type 
(flfL[ z,~y,-' dx)Y,, where the Zic andyi  are nonnegative real numbers whose sum 
over i is equal to 1. As a particular case, we obtain the canonical bounds (see 
their definition in Section 2.2): 

where the aL'S satisfy the condition a L/> 1 for any L, and ~ L aE l = k (k is the 
number of variables that are integrated over). These bounds are finite for all 
n-graphs of neutral systems. We obtain also finite bounds for all irreducible 
n-graphs of polar systems, and for certain n-graphs occurring in the theory of 
ionized systems. Finally, we give a sufficient condition for an arbitrary n-graph 
to be finite. 

KEY WORDS: Upper bound; covering; spanning n-trees; linear program- 
ming. 

1. INTRODUCTION 

In preceding articles, r we have developed a new estimation method 
for n-graphs. An n-graph is a multiple integral whose integrand is a product 
of 2-body functions, as given by Eq. (2.1) below, n-graphs arise when one 
studies, by perturbation or variation theoretic techniques, thermodynamic 
and transport properties of classical and quantum systems, (4'5) amplitudes 
of scattering processes, r energy levels of atoms and molecules, ~7) inter- 
atomic and intermolecular potentials, ~7) etc. For example, the equation of 
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state of a gas of classical particles interacting via a two-body interaction 
potential is (4) 

P=okT(1- ~k=, k + flkOk) (1.1) 

where 0 and T denote, respectively, the density and the temperature of the 
system, and k! fig is the sum over all irreducible 1-graphs with k field- 
points. 

Our estimation method enables us to obtain upper bounds, for any 
given n-graph F(x~ . . . . .  xn), by means of the values of certain suitably 
chosen subgraphs of F. In this article, we make use of spanning n-trees as 
subgraphs. A spanning n-tree of r is an n-graph which contains all the 
field-points of F and which is made of n disjoint trees, each tree having one 
and only one root-point. (See for example Fig. 4b, where some 2-trees are 
drawn.) The use of spanning n-trees as subgraphs enables us to obtain very 
simple explicitly computable upper bounds. These bounds are independent 
of the coordinates x~ . . . . .  xn. 

In this article, we investigate the possibility of obtaining finite bounds 
for n-graphs that occur in statistical mechanics. We concentrate particularly 
on n-graphs of polar and ionized systems, because the bounds that are 
obtained by applying the theorem of the means (i.e., lffgdxl < 
sup t fill gl dx), according to the procedure of Riddell and Uhlenbeck (8) and 
Groeneveld, (9) are infinite for these systems. Bounds of this type will be 
called mean-value bounds, in the sequel. The possibility of obtaining finite 
bounds for n-graphs that occur in quantum fieM theory and in quantum 
chemistry will be investigated elsewhere. Some possible uses for our bounds 
have been proposed and described briefly in Refs. 1-3. A more detailed 
study of this point will be done in subsequent articles, when we investigate 
the relative accuracy of our bounds. 

In Section 2, we recall briefly the definition and the graphical represen- 
tation of an n-graph, and the results of our estimation method which are 
needed in this article. In Section 3, we first show that it is possible to cover 
any n-rooted graph by means of spanning n-trees. (A set of subgraphs "fi of 
F covers F if U iTi = F; cf. Ref. 2.) From this result, we deduce a procedure 
for constructing upper bounds of the type IILII fLIi ~L for any given n-graph, 
with [Ifl[~ = ( f l f l~ ~-' for a finite, and ][fl[~ = suplfl. Then, we illus- 
trate this procedure with an example, and apply it also to estimate the 
complete 1-graphs with m points, for any m. This is useful to have an idea 
about the accuracy of our estimation method, for arbitrary n-graphs. 
Finally, we show that a sufficient condition for an n-graph to be finite is 
that a certain linear programming problem (i.e., a system of linear equa- 
tions with linear constraints) associated to the n,graph has a feasible 
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solution. This program incorporates the topological structure of the graph 
through the set of linear equations, and the shape of the functions fL 
through the linear constraints. It is possible to express the sufficient 
condition in this very simple form because the functions encountered in 
statistical thermodynamics are of a very special type, which allows us to 
characterize their shape by a single number p. 

2. GENERALITIES 

2.1. Definition and Graphical Representation of n-Graphs 

An n-graph is a multiple integral of the following type: 

= fA ~ fL(xi, xj)dx~+1. . . dxn+ ~ (2.1) F(x I . . . . .  x~; A) kc r 

where the symbols have been defined precisely in Refs. 2 and 3. We recall 
briefly their definitions. F is a graph with n root-points, or an n-rooted 
graph, 2 k field-points, and l lines L joining the pair i, j of points. The set of 
lines of F is denoted by EF. In (2.1), the product runs over all lines of EF, 
and the integration runs over the k field-points varying in the domain A. 
When the domain is infinite, A is very often omitted in (2.1). xi represents 
the coordinates required to fix the spatial location r~ and, eventually, the 
orientation to i of particle i. The functions fL(x~,xj) are pairwise invariant 
(i.e., they are invariant by any translation and rotation of the system 
composed of the two particles as a whole), and can be all different. The 
various possible forms they can take in equilibrium statistical mechanical 
problems are described in detail in Ref. 3, Section 2.4, and in Section 3.5 
below. 

We restrict ourselves to connected n-graphs (i.e., every two points are 
joined by a chain), since it is known that any n-graph can be factorized into 
a product of connected m-graphs with m < n (see, e.g., Ref. 3, paragraph 
3.1.1). Note, however, that we do not assume that F is irreducible (i.e., no 
field-point is an articulation point) since A may be finite. Indeed, an 
n-graph can be factorized into a product of irreducible m-graphs with 
m < n only if A is infinite. 

For our upper bounds, the domain is taken to be infinite. This 
assumption has the drawback of not allowing us to study all the n-graphs of 

2 When no confusion is possible between an n-graph, i.e., a multiple integral of type (2.1), and 
its representative n-rooted graph, the latter will also be called an n-graph. If some confusion 
is possible, we speak of "the n-graph F(x I . . . . .  xn; A)" and "the n-graph F," to distinguish 
the two notions. 
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polar systems and of the primitive model of ionic solutions. 3 Indeed, for 
these systems, certain n-graphs may not be defined in an infinite domain, 
as their lines decay like r -3 and r -1, respectively, at large distances. 
Therefore, upper bounds are not defined either. On the other hand, this 
assumption allows us to simplify any n-tree T ( x j , . . . ,  x,), which occurs in 
the upper bounds, into a product of constant factors (Ref. 3, Corollary 
3.11): 

T(xI' " " " ' Xn) = L ~ r fA= fL (X) dx (2.2) 

where A~ means that the domain is infinite. 
In our examples of application, we restrict ourselves to n-graphs whose 

functions (or lines)fL are powers of a function f(r),  namely, 

fL(r) = [ f ( r ) ]  ~L, etr real positive (2.3) 

An n-graph F(x~ . . . . .  x, ;A) is represented by the graph F with the weight 
a L written near the line L (however, a L is omitted if it is equal to 1). 

2.2. Description of our Upper Bounds 

Our estimation method gives the following upper bounds ~1-3) : 

I r (  x,  . . . .  , x n ; A )  I ~ ffI[fk ~ IfL]ZiLYI-'dXn+I''" dXn+k (2.4) 
i=1 IdA L~g3'i 

where the ~,i's are a set of c line-subgraphs of F, which are assumed to make 
a covering of I' (i.e., their union is equal to F). c is the number of these 
line-subgraphs. Furthermore, the ziL and Yi are nonnegative real numbers 
whose sum over i is unity: 

~ ziL = 1 VL ~ EF (2.5a) 
i=l 

ziL >1 0 if L ~ E)'i (2.5b) 

za~ = 0 if L ~ E~'i (2.5c) 

Yi = 1 (2.6a) 
i= l  

Yi/> 0 (2.6b) 

With the particular choice Yi = c-~, we associate, to each covering of F a 
unique upper bound, which we call the canonical bound (associated with the 

3 For a precise definition of these systems, see, for example, Ref. 10. 
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covering). One then has 

ZiLY  i 1 = Ot L /> 1 (2.7) 

a c is equal to c X  L 1, where X L denotes the number of subgraphs "/i which 
contain the line L. 

3. MAJORIZATION OF ARBITRARY n-GRAPHS BY MEANS OF 
SPANNING n-TREES 

Throughout this chapter, l?(x~ . . . . .  xn; A) can be any connected n- 
graph. The subgraphs Yi of F, which are used to obtain estimates of 
F ( x l , . . . ,  x~; A), are considered as fixed parameters, unless stated other- 
wise. 

3.1. Covering of the n-Graph F by Means of Spanning n-Trees 

In Section 2.2, a set of upper bounds for F(x 1 . . . .  , xn; A) was asso- 
ciated by our estimation method to each covering of F by a set of c 
line-subgraphs Yi. For these bounds to be useful, the Yi must be chosen so 
that all the n-graphs in the right-hand side of (2.4) can be simplified into a 
product of easily computable factors. The simplest n-graphs in this respect 
aFe n-trees, because they can be simplified into a product of simple 
integrals [see Eq. (2.2)]. It is possible to bound any n-graph by means of 
n-trees because of the following: 

Lemma 3.1. Any connected n-rooted graph can be covered by a set 
of spanning n-rooted trees. 

P r o o f .  We first cover the graph F by a set of spanning trees, and 
then cover each tree by a set of spanning n-rooted trees. 

The first part of the proof is a straightforward consequence of the 
usual construction of a spanning tree in a connected graph(ll'12) : 

(i) Label all points. 
(ii) Assign to each point i a weight w i defined as the number of lines 

in the shortest path joining point i to point 1. 
(iii) Delete all the lines joining two points of equal weight. 
(iv) Delete all the lines joining points of weights w i and w i - l, except 

the one for which the label on the point of weight w~ - 1 is least. 

These steps are illustrated in Fig. 1. 
The important point to notice here is that this construction gives a tree 

which contains a l l  l i ne s  incident at point 1. Therefore if we perform the 
same construction by starting successively from point 2, 3 . . . . .  n + k in- 
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Fig. 1. Construction of a spanning tree out of a given graph. In (a), a label (number not in 
parentheses) and a weight (number in parentheses) are assigned to each point, according to 
steps (i) and (ii). (b) and (c) are obtained by applying steps (iii) and (iv). 

stead of point 1, we obtain a set of spanning trees which contains all the 
lines of F, and thus form a covering of F. 

Let us now show how to cover any spanning tree T of F by means of 
spanning n-trees of T (and thus of r) .  The first point is to find an algorithm 
which enables one to construct a spanning n-tree of T. 

First of all, we must delete (n - 1) lines of T, because T has n + k - 1 
lines, whereas a spanning n-tree has k lines. But it is also clear (see Fig. 2c) 
that one cannot delete lines in any manner. Indeed, if we want to obtain 
finite upper bounds, each field-point of the reduced n-rooted graph must be 
linked to at least one root-point. 

We are going to show that the following algorithm satisfies the 
preceding condition: 

(i) Choose a root-point, say 1. 
(ii) For each root-point i, delete from T the line L i incident at i which 

belongs to the chain joining i to 1. 

This construction is illustrated in Fig. 2. Our algorithm is well defined 
because, as T is a tree, there is a unique chain joining any pair of points. (13) 

~ ~  OV; 0 0 

Ca) (b) (c) 

Fig. 2. Construction of a spanning n-tree out of a tree. (b) has been obtained from (a) by 
means of the algorithm of Lemma 3.l. (c) gives an incorrect way to delete lines, which would 
give rise to an infinite upper bound. 
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In particular, there is a unique chain Ci joining the root-point i to 1, and 
thus the line L i is uniquely defined, too. 

Now, to prove that we obtain an n-rooted tree by our procedure, we 
have to check that each field-point is linked by a chain of field-points to 
one and only one root-point. Let us first note that the graph "r obtained by 
deleting the (n - 1) lines L i has no cycle, because T is a tree. ~ 13) Therefore 
the number of components of ~- is equal to its number of points minus its 
number of lines, (14) i.e., (n + k) - k = n. On the other hand, the n root- 
points of ~- belong necessarily to different components. For, as we already 
noticed, any two root-points i and j are linked in T by a unique chain CO~. 

As i and j are known to be linked already to the point 1, by means of 
chains C i and Cj, C~j is necessarily contained in C~ tO Cj. Therefore, after 
having deleted the lines L i and Lj, the root-points i and j cannot be linked 
any more by a chain. 

Indeed, either one of the root-points i o r j  lies on the chain linking the 
other root-point to 1, or it does not. If it does, let us assume that j lies on 
C i. Then, the deletion of L i disconnects root-point i from all other points of 
Ci, and in particular from root-point j .  If it does not, then Lj does not 
belong to C~ (otherwise, both end points of Lj would lie on Cg, and in 
particular root-point j )  and thus Lj belongs to Cy = Cg U Cj - C t A Cj. This 
is illustrated in Fig. 3. Finally, the deletion of both lines L~ and Lj ensures 
that, in both cases, the root-points i a n d j  become disconnected. 

In short, we have seen that ~- has exactly n components, and that none 
of these components contains more than one root-point. But, as there are n 

j 
L. Lj 

i 
L 

(G) (b) 

Fig. 3. The only two possible configurations for a given pair of root-points, in a tree (k can 
be identical to point 1). When applying the algorithm of Lemma 3.1, we delete both lines Lg 
and Lj, so that in both cases, i a n d j  become disconnected. 
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root-points, this implies that each component of �9 contains exactly one 
root-point. Therefore, ~- is an n-tree. 

Now, the important property of the n-tree that we have constructed is 
that it contains all lines incident at root-point 1. This implies that, if we 
perform the same construction by choosing successively each of the root- 
points of T, instead of point 1, we obtain a set of n-trees which contain all 
the lines of T, and thus form a covering of T. 

In the case where we want to estimate a 1-graph, the preceding 
construction reduces to its first step because spanning trees are also 
spanning 2-trees. 

It is useful, for the following, to reformulate Lemma 3.1 in the 
language of linear programming theory. (15) In this language, Lemma 3.1 
says that there exists at least one set of real positive numbers ziL which 
satisfy the linear constraints (2.5), if the -gi's are chosen to be all the possible 
spanning n-trees of I'. Note that, in Section 2.2, the situation was com- 
pletely different, because the constraints (2.5) were assumed to be satisfied, 
insofar as the 7~'s were assumed to make a covering of F. 

3.2. Upper Bounds for l~ (x] , . . . ,  x,; A) 

Now that we have proved that any n-graph I' can be covered by a set 
of spanning n-trees of F, upper bounds are immediately deduced by 
combining this result with Eqs. (2.2) and (2.4) above. This gives the 
following theorem: 

Theorem 3.2. Let F(x l, . . . ,  x n; A) be any n-graph, and T 1 . . . . .  T~ 
be a covering of F made of c spanning n-rooted trees. One has the infinite 
set of upper bounds 

[I~(Xl ' ' "  " '  xn ;A) [  ~ h I-I (([fL]ZiLYi-ldx) yi (3.1) 
i=1 L ~ f.Ti \~' / 

where the zm's and yi's are nonnegative real numbers constrained only to 
satisfy conditions (2.5) and (2.6). 

Corollary 3.3. The canonical upper bound associated to the covering 
T 1 . . . . .  T c is written as 

IV(x, . . . .  , x , ; A ) l  < 1-I ((IfLI~Ldx) ~'7' (3.2) 
L ~ F - . J  

where a/. is equal to c divided by the number of n-trees Ti which contain 
the line L. Moreover, one has 

Ol L >/ 1 for any L (3.3) 
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with at least one % strictly larger than 1 if F is not reduced to an n-rooted 
tree. 

Proof. This is an immediate consequence of (3.1) and of Corollary 
4.3 given in Ref. 3 [see also (2.7)]. Note that one has the relation 

~ [ l  = k (3.4) 
LEfiF 

where k denotes the number of field-points of I'. This is a consequence of 
the definition of the aL's, combined with the fact that the total number of 
lines, in the covering, is equal to ck. Equation (3.4) gives a useful way to 
check results, in practical calculations. 

For the upper bounds (3.2) to be finite, it is necessary that all the fL's 
decay to zero at large distances (at least, if pathological forms are ex- 
cluded), because the a / ' s  are finite numbers. Therefore, if some fr's do not 
decay to zero, we have first to get rid of these by making use of the mean 
value estimation method (8'9'3) before applying (3.2). Equivalently, we can 
get rid of these fc's directly from (3.2), provided the corresponding ac's are 
taken to be infinite (see Ref. 3, Section 4.4). Note that the assumption 
o~ L = + m is compatible with the constraints (3.3) and (3.4). 

3.3. An Example of Application 

In Section 3.1, we have given a method to construct a covering for any 
given n-graph by means of spanning n-trees. We illustrate this method of 
construction by an example, and compute the corresponding canonical 
bound, and make some comments on our estimation method. 

Let us then study the following 2-graph, called c9(xl2 ) by Kim et al., (16) 
and which is defined by the equality 

c9(x12) = Je~'~fJ3f14flsf23f24f25f34f35f45 dx3 dx4 dx5 (3.5) 

Graphically, this is denoted as 

r ) = (3.6) 
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(a) 

Lavaud 

tbJ 
<'o <o <o ..Vo 
< \  o> o> 

Fig. 4. Illustration of the algorithm of Lemma 3.1, which enables one to construct a covering, 
for any n-graph, by means of spanning n-trees. The 2-graph e9 [defined by Eq. (3.6)] is first 
covered by means of the five spanning trees given in (a). Then, each tree of (a) is covered by 
means of the two spanning 2-trees of (b) which belong to the same column. 

This is the most complicated 2-graph which has been computed, up to now, 
for realistic radially symmetric interaction potentials. (16) The covering of c9 
obtained by the method of the preceding paragraph is shown in Fig. 4. It 
yields the following canonical upper bound: 

3 9/5 5 6/5 I <(flf(,,)l l~ (fll(x)i"dx) 
For the Oaussian gas, we have O ( r ) =  50-312exp(-3r2/2)= 2.83 X 

10-3exp(-3r2/2) ,  with r =  It1-hi, whereas our upper bound (3.7) is 
equal to 7.45 • 10 -3. Therefore, the latter overestimates the maximum 
of c9(r) by a factor 2.63. This shows that (3.7), although extremely sim- 
ple, is nevertheless relatively accurate for small values of r. [Note that the 
mean value bound, which is equal (9'3) to MZ-~B k, with M = supif(x)l and 
B = f[f(x)l dx, overestimates e9(r) by a factor of 353.] 

The situation may not be so favorable for realistic interparticle poten- 
tials. Nevertheless, it seems reasonable to hope that the upper bound (3.7) 
also has a correct order of magnitude for realistic systems, provided the 
temperature is not too low. (3"17'18) 

The method of Section 3.1 provides a simple algorithm which, for any 
given n-graph with k field-points, produces a covering made of n(n + k) 
spanning n-trees. However, for a given n-graph, there is a large number of 
different coverings made of n-trees, and the former is usually not the 
simplest one [i.e., there are usually coverings which have a number of 
n-trees smaller than n(n + k)]. This can be checked easily in the case of the 
preceding 2-graph e9(x12 ). Indeed, we see from Fig. 4 that e9 can be 
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covered with only four 2-trees (the first, the second, the eighth, and the 
tenth of Fig. 4b) instead of ten. In fact, one can even find a simpler 
covering, made only of three 2-trees, as indicated in Fig. 5 below. The 
corresponding canonical bound is equal to 

[c9(Xl2)[ <~[flf(x)[3dxl2 (3.8) 

Note that one cannot find a covering simpler than the one of Fig. 5, 
because e9 has nine lines, while a spanning 2-tree of e9 has three lines. 

It will be shown elsewhere (H9) that the upper bound (3.8) is the best 
one which can be obtained by our estimation method, if one makes use 
only of spanning 2-trees to cover e9. In the case of the Gaussian gas, (3.8) is 
equal to 7.13 • 10 -3. This shows that (3.7) is already a good bound. 

The bounds (3.7) and (3.8) are finite for polar systems, because I f11~ 
lfl 5/2, and if[3 decay at large distances like r -I~ r -7"5, and r -9, respec- 
tively. This is not a surprise, because we had already proven in Refs. 2 and 
3 that all irreducible n-graphs of polar systems are finite. Equations (3.7) 
and (3.8) are nevertheless interesting, because they are improvements over 
the bound obtained in Ref. 3, paragraph 4.5.3. 

On the contrary, in the case of the one-component three-dimensional 
plasma (i.e., when the lines are equal to e-re~r), the bounds (3.7) and (3.8) 
are infinite, due to the divergence at small r of the integrals. This is not 
because our estimation method fails to be valid, but because e9(r) diverges 
logarithmically at the origin. As these bounds are constants independent of 
the coordinates, they must be larger than the maximum of e9(r), and thus 
be infinite. More generally, any bound which would be expressed by means 
of 1-graphs (1,22) is necessarily infinite, for the same reason. 

For a bound to be useful, it therefore should not be constant. Such a 
bound can be obtained for example by making use of the covering of c9 
made of the spanning trees of Fig. 4a. One obtains in this way 

[O(x12)1 <(/fS/2dx) 2" I jJ13[i'r162 3]'~2/"~,j[ ('fs/3f'/3 .*32 dx3)X3/5 (3.9) 

It can be checked by direct computation of the convolution products 
that (3.9) is finite everywhere except at the origin, and decays to zero at 
large distances. 

�9 

Fig. 5. Covering of the 2-graph c9 [defined by Eq. (3.6)], by means of three 2-trees. 
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Upper bounds that decay to zero at large distances will be discussed 
systematically elsewhere (see also Ref. 1). 

3.4. The Complete 1-Graphs Km(Xl) 

In the preceding section, we have seen on a particular example, how 
the algorithm of Lemma 3.1 enables us to obtain computable upper 
bounds. Let us now apply this algorithm to the complete 1-graphs Km(X 0. 
The study of these 1-graphs is useful to evaluate the relative accuracy of 
our estimates for arbitrary n-graphs. Indeed, as has been suggested in Ref. 
3, one can consider that a given n-graph with k field-points is estimated 
with a relative accuracy lying between the accuracy of the estimates for the 
cycle C,+ k with n + k lines and for the complete 1-graph K,+~. 

The complete 1-graph K,,(xl) has m points and �89 l) identical 
lines, and is defined by 

Km(Xl) = ( k  1-I f'jdx2"'" dxm (3.10) 
JA~ i <j 

AS the domain is infinite, Km(X 0 is a constant (see Ref. 3, Corollary 3.6). 
So, when no confusion is possible between the graph and the 1-graph, 
Kin(x1) will be also written simply Km. 

As Kin(x1) is a 1-graph, we have just to look for a set of spanning trees 
of K= which cover the latter. The construction of Lemma 3.1 gives, as a 
covering of K m, a set of m spanning trees, each one being made out of the 
(m - 1) lines joining one given point to all the others. In the case of K 4, we 
find the covering given in Fig. 6. 

By this covering of K m, we obtain the following canonical upper bound 
for Kin(x0: 

= T m (3.11) 

This is an immediate consequence of the fact that each line appears exactly 
in two spanning trees. 

For the Gaussian gas, we find ~ = (m/2)  -3(m- 1)/2. The exact value 
is equal to K,, = m -3(m-2)/2, because the complexity of K m (i.e., its total 

Fig. 6. Covering of the 1-graph K 4 by means of spanning l-trees. 
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Table I. Relative Accuracy of our Bound T m and of the Mean Value Bound T m 

for the Complete 1-Graph K,, with m Points, in the Case of the Gausslan Gas. 
W e  Give the Value of the Ratios T,./Km and TIn~K,, , for Different Values of m 

m 3 4 5 6 7 

T m / K  m 1.54 2.83 5.72 12.3 27.6 
T,~/K m 5.20 64 1.40 X 103 4.67 • l04 2.18 X 106 

I 

number of spanning trees~4)), is equal (4'u) to m -(m-2). Therefore, the ratio 
T m / K  m of our bound to the exact value is asymptotically equal to 

-~m / gm ~ m  -3/223(m -1)/2 (3.12) 

for large values of m. 
It is interesting to compare our bound (3.11) to the mean value bound. 

The latter is written as 

[Kin(x])[ < M~m-~'U"-2)/2[flf(x)Jdxl"-'= Tm (3.13) 

For the Gaussian gas, the right-hand side of (3.13) is equal to T~ = 1. In 
Table I above, we have compared T m and Tm to the exact value of Km. This 
table shows that our bounds are much more accurate than the mean value 
bounds for the Gaussian gas. 

On the contrary, for the hard-sphere gas, both types of bounds are 
identical, as we have ]f(x)l m = If(x)] for any x, in this case. Note, however 
that the mean value bounds are much more accurate for the hard-sphere 
gas than for the Gaussian gas. This can be seen by comparing the results of 
Table I to those of Table II. 

Remarks. Equation (3.11) is the best upper bound which can be 
obtained by means of spanning trees. (~'19) 

For the particular 1-graphs K m, our estimation method, using Lemma 
3.1, amounts to writing the identity 

<~.j f= H f;/2 (3.14) 
i " i=1 j =  

Table I I .  

m 

Common Value of the Ratios Tin~Kin and Tm/K m for the 
Hard-Sphere Gas, and for Different Values of m 

u 

3 4 5 6 7 

T m/K,,, = (T,,,/K,,,) 2.13 6.31 22.6 90.6 393 
ii 
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and then applying H61der's inequality withy i = 1/m to the product of the 
m factors in the right-hand side of (3.14). 

In Ref. 3, paragraph 4.3.1, we have obtained for K 4 the same bound 
(3.11) which is equal in this case to (flf(x)12dx) 3, by making use of a 
simpler covering. This shows that different coverings do not necessarily give 
different canonical upper bounds. 

3.5. Definition of the Classes of Functions to be Used 

We have seen that our estimation method provides, for any n-graph, 
upper bounds which are extremely simple. Indeed, they involve just the 
computation of integrals of the type f tfLl ~ dx. However, to be useful, these 
bounds have to be finite. Therefore, we are naturally led to look for certain 
classes of functions, which are sufficiently large to include all the functions 
which are encountered in practice, and at the same time sufficiently small 
to ensure that the bounds are finite, provided the fL's are chosen inside 
these classes. 

3.5.1. Analysis of the various functions encountered in equilib- 
rium statistical mechanics. The various functions which can be en- 
countered in most articles dealing with realistic systems have been de- 
scribed in detail in Ref. 3, Section 2.4. For our present purposes, it is 
convenient to classify these functions into three classes, according to their 
behavior at short and at long distances. 

(i) Functions which are bounded everywhere and go to a nonnull 
constant at large distances. To this class belong the Boltzmann factors 
exp[-flop(r)], where r is the interparticle potential, and the distribution 
functions g(r). 

(ii) Functions which are asymptotically proportional to r -m at small 
distances (m being a fixed number), are bounded everywhere else, and 
decay exponentially at large distances. To this class belong the Debye- 
Hfickel function b(r)= - e e - r / r  and the Abe-Meeron function B ( r ) =  
e x p [ b ( r ) ] - 1 -  b(r), as also the generalized Debye-H/ickel functions 
[b(r)]% for a L real positive. (3~ 

(iii) Functions which are bounded everywhere and decay to zero at 
large distances as a certain power r-m of the interparticle distance or faster 
(for example exponentially). To this class, belong the Mayer functions of all 
the usual interparticle potentials, for example the hard-sphere and square- 
well potentials (which are identical to zero from a certain distance), the 
soft-sphere and the Lennard-Jones potentials (which decay like r -m, 
m ) 3 ) ,  as also the interaction potentials of polar systems and of the 
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primitive model of ionic solutions (which decay, respectively, like r-3 and 
r- l ) .  To this class belong also some other functions, which may occur in 
integrands of n-graphs, for example finite sums of chains of Mayer func- 
tions, as used for example by Salpeter, (23) and two-body correlation func- 
tions that occur in integral equations for the distribution function g(r) (see, 
for example, Ref. 24). 

Indeed, the former decay to zero like the potential itself, for any 
density and temperature, (2~ and the latter decay at least as fast as the 
potential at small activities. (2s) Finally, to this class belong also the func- 
tions which occur in the theory of liquids, 4 provided the interpartMe 
potential is split into the sum of two terms % and ~1 in a suitable way, as 
explained in Ref. 3, Section 2.4.3. In that case, the long-range part q~l is 
bounded everywhere and decays to zero at large distances like r-m, SO that 
the lines (-Brpl) p, which arise when expanding the function exp(-flrPl) in 
powers of ~1, can be considered (i.e., have the same overall shape) as 
Mayer functions of neutral systems, and belong to class (ii). In particular, 
the splitting of the Lennard-Jones potential introduced by Weeks et al., (27) 
and which has proved very important for the applications, is of the 
preceding type. 

3.5.2. The Classes of Functions D e and D p. To ensure that all 
functions are integrable, we require them to be continuous (except perhaps 
at a finite number of points). This reasonable hypothesis is satisfied by 
most of the functions of the preceding section (except perhaps by correla- 
tion or distribution functions, since this has not been proven rigorously). 

In the preceding section, we have classified in three disjoint sets the 
functions which can be encountered in practice, in statistical mechanics, so 
that the functions in each set share a common property, when one takes 
their norm (28) [Ifll ~ = ( f  [ f l  ~ dx) 1/~. With this we can make the following 
three statements: 

Each function f of class (i) satisfies the property 

(P1) :  I[f[[~ is finite if and only if a = + ~ .  (We recall that [[f[[oo 
= sup lfl). 

Each function f of class (ii) satisfies the property 

(P2): There exists a real positive number p = d/m uniquely defined 
by f such that I]f]] a is finite provided a < p, and infinite other- 
wise. 

4 See, for example, Ref. 26 and references therein. 
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Each function f of class (iii) satisfies the property 

(P3): There exists a real positive number p = d / m  uniquely defined 
by f such that Ilfll~ is finite provided a > p, and infinite other- 
wise. 

Let us prove the last statement. (The other two can be proven in a 
quite analogous way). 

If f(r) is a function class (iii) that decays as r- '~ at large distances, it 
satisfies, by definition, the inequalities 

If(r)[ < B Vr (3.15a) 

If(r)[ < AF -m Vr > R (3.15b) 

for some positive constants A, B, and R. Therefore, l[fll~ is clearly finite 
for any a larger than p = d /m,  where d is the space dimensionality. Also, 
I l f l l~=  ~ for a = d / m  [since f (r) .  rm--Unonzero constant, as r ~ c e ] .  
Furthermore, by applying the Cauchy-Schwarz inequality to the identity 
Ifl e = Ifl(P/2)-klfl(e/2)+k for any k real positive, we find Ilfll% < 
Ilflle-2~llflle+2k- This shows that [Iflle-2k is infinite for any k > 0, because 
Ilfllp is, whereas Ilfllp+2~ is finite. 

The classes of functions which have properties (P2) or (P3) will be 
called, respectively, D e and De. The class of functions which have property 
(P1) will be called D ~o. (This notation is coherent with the definition of D e, 
for p finite.) 

With these definitions, we see that the Debye-Htickel function b(r) 
and the Abe-Meeron function B (r) both belong to D3, while the Coulomb 
function C ( r ) - - e x p ( - L / r ) -  1 belongs to D 3. The Mayer functions be- 
long to D 1 for a polar system, and to D 1/2 for a Lennard-Jones system. 
More generally, the Mayer functions of neutral systems (3~ (i.e., systems 
whose interparticle potential is bounded below and decay at large distances 
at least as fast as r - m ,  m > d, for a d-dimensional system) belong to D e 
with p = d~ m < 1. 

3.6. Sufficient Condition for an n-Graph to be Finite 

For the upper bound (3.1) to be finite, it is necessary and sufficient 
that each factor flfLl~'LY'-'dx be finite. With the preceding definitions this 
can be stated in the following form: 

Theorem 3.5. Let us assume that, for each L, the line fL of the 
n-graph F(x I . . . . .  x,;  A) belongs to the class D pL (or DpL ). A necessary and 
sufficient condition for the upper bound (3.1) to be finite is that the ziL and 
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Yi satisfy the inequalities 

ziL - P L Y i  > 0 if fL E D eL~ and L ~ T~ (3.16a) 

gir -- PLYi < 0 if fL ~ DpL and L E T/ (3.16b) 

As a consequence, a sufficient condition for F ( x l , . . . ,  xn; A) to be 
finite is that there exists a set of real nonnegative numbers ziz and Yi which 
satisfy simultaneously the system of inequalities (2.5), (2.6), and (3.16). 

The main point about these inequalities is that they are linear in the 
variables zic and Yr Therefore, to know whether there exists a finite bound, 
we have to solve a linear programming problem. (~5) Such a problem is 
known to be solvable in a finite number of steps by means of the simplex 
algorithm.(15) 

It is important to note that the preceding linear program enables us to 
realize explicitly the objective of our estimation method, as described in 
Ref. 3, which is to obtain information on the numerical value of an 
arbitrary n-graph F(x~ . . . . .  xn; A) simply by making use of some global 
information on the topological structure of F and on the shape of the 
functions fc- Indeed, the topological structure of F is incorporated into the 
linear program through the linear system ~]ziL = l, since it is determined 
by the incidence matrix of F with all its spanning n-trees, and the shape of 
the fL's is incorporated through the constraints (3.16). 

As there are known algorithms to construct all the spanning trees of F 
(and thus all the spanning n-trees of F, by Lemma 3.1), we have now at our 
disposal an algorithm that solves formally the problem of finding finite 
bounds of type (3.1), for any n-graph (in particular, the fL's can be all 
different). But, if we want to construct practically a finite bound for a given 
n-graph, there are usually other ways much simpler than using the general 
algorithm. Indeed, the preceding linear program involves C(l + l) vari- 
ables, where C is the total number of spanning n-trees of F, and this 
number may be very large. For example, for the 2-graph O(x12 ), we would 
have 500 variables. Of course, if the fL's (or, more precisely, the pZs) are all 
different, as can occur in quantum chemistry, it may happen that we have 
no other choice than trying to solve the complete linear programming 
problem. But if the n-graph is not too complicated, for example if the fc's 
are all identical or equal to a few simple powers of the same function, as 
occurs in statistical mechanics, it is usually much simpler, in practice, to try 
to satisfy conditions (3.16) with some suitably chosen z~L and Yi associated 
to some simple coverings, rather than solving the complete linear program- 
ming problem. Furthermore, if we restrict ourselves to 'making use of 
canonical bounds, we then only have to find a covering which satisfies the 
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Fig. 7. 

4 

o) I@2 
3 

<o <o o> 
(a) Graphical representation of the 2-graph defined by Eq. (3.18). (b) Covering of this 

2-graph by means of spanning 2-trees. 

very simple conditions 

X L < cpL 1 V L  (3.17) 

where X L denotes, as usual, the number of spanning n-trees of the covering 
which contain the line L. 

Let us illustrate this with the following example: 

F(r 1, !" 2; A) = fA2Cl3 624C24C22642 dr 3 dr 4 (3.18) 

where C,y = C(Ir i  - rjl), and C(r) = e x p ( -  L / r )  - 1 is the Coulomb line. 
This 2-graph has been represented in Fig. 7a above. Note that each of its 
lines is nonintegrable in an infinite volume, because C(r) decays like r -  1 at 
large distances, and so it is not obvious whether F(q, r2;A ) is finite or not. 
In particular, the mean value bounds are infinite. However, we are going to 
show that this 2-graph is actually finite. To this end, let us consider the 
covering given in Fig. 7b. We have c = 4, and X14 = )(34 = Xn2 = 2, Xl3 
= X42= 1. Furthermore, as C ( r ) E  D 3 and C2( r )E  D 3/2, we have also 

/714 = tO34 = / 0 4 2  = 3 and/013 = Pn2 = 3. Therefore, we see that the condition 
X L < cpL ~ is satisfied for any L, and so there exist finite upper bounds for 
F(r12; A). The covering of Fig. 7b gives 

F(rl, r2; A ) <[fca(r)drl2 (3.19) 

This upper bound can be computed analytically (see Appendix), and is 
equal to [4~rL 3 �9 ~ (44 In 2 - 27 In 3)] 2. We find 

F(rl, r2; A) ~< 0.31058(4~rL3) 2 
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Finally, one can make the following remarks about canonical bounds 
of neutral, polar, and ionized systems: 

For an n-graph of a neutral system (i.e., an n-graph whose lines are 
bounded and decay like r-m, with m > d), all the canonical bounds [and in 
particular those of type (3.2)] are finite. Indeed, we have PL < 1 for any L, 
in this case. Therefore, from inequality (2.7), the conditions (3.17) are 
automatically satisfied. This shows a posteriori the usefulness of canonical 
bounds. On the contrary, there are bounds of type (3.1) which are infinite, 
because it is always possible to choose a pair of numbers ziL and Yi so that 
(3.16) is not satisfied. 

For an n-graph of polar system (i.e., an n-graph whose lines are 
bounded and decay like r-d),  it is always possible to find a bound of type 
(3.2) which is finite, provided the n-graph is irreducible. 5 This can be seen 
by applying (3.2) to the right-hand side of the inequality [see Ref. 3, Eq. 
(4.44)] 

,(; x,; A)l < _II II IfY/('-l dx.+l " ' "  dx,+k (3.20) 
i = L E Eyi  

Here, the yi's are obtained from r by deleting one of its lines. Note that the 
bound obtained in this way is an improvement over the one given in Ref. 3, 
Eq. (4.48), because the latter was obtained by applying the mean value 
estimation method to the right-hand side of (3.20). 

For an n-graph of polar system or of ionic solution (i.e., an n-graph 
whose lines decay like r - a  or less rapidly), canonical bounds may be infinite 
even if the n-graph itself is finite. To illustrate this point, let us con- 
sider once again the 2-graph F(rl,r2; A) defined by Eq. (3.18). The first 
three 2-trees of Fig. 7b make a covering of this 2-graph. But, with this 
covering, condition (3.17) is not satisfied because we have cX13 = 3, while 
P13 is also equal to 3. This covering would give the canonical bound 
[fC3(r)dr]4/3[fC6(r)dr]2/3, which diverges logarithmically because of the 
first factor. 

To be allowed to apply the theorems of simplification of n-graphs (see 
Ref. 3, Section 3.1) to a given n-graph, it is necessary to first prove that its 
integrand is absolutely integrable. For neutral systems the mean value 
estimation method (9'8'25) enables one to answer this question, but not for 
polar and ionized systems. The results of this section enable one to answer 
this question partly, for the latter systems. Note that, in practice, the 
theorems of simplification of n-graphs into products of irreducible compo-  

An n-graph is irreducible if any field-point lies on a chain of field-points linking two 
root-points. (If n = 1, the root-point is taken to be the initial and the final point of the chain.) 
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nents  have always been  assumed  to be app l i cab le  6 to these systems al- 
though this is quest ionable ,  especial ly for  ionized systems in the f r amework  
of the A b e - M e e r o n  theory,  (3~ where  infini te  n-graphs  occur.  (21'31) 
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APPENDIX A 

In  this Append ix ,  we compute  the integrals  I n = f l C ( r ) l n d r ,  where  
C(r )  = 1 - e x p ( - L / r )  is the C o u l o m b  line and  n is an  integer larger  than  
3. These  integrals  are  useful  to compute  upper  bounds  for  a rb i t r a ry  

n-graphs  with C o u l o m b  lines. 

W e  have 

I n =fle(r)lndr=4 fo~ e - r / r ) n r 2 d r  (A.1) 

Wi th  the change  of var iables  L / r  = t, we f ind 

dt (A.2) In = 4~rL3f0~(1 - e-t)n 7 
To compu te  this integral ,  it is convenien t  to reduce  the negat ive  power  t - 4 ,  

by  par t i a l  integrat ion,  to t-z.  W e  ob ta in  

I n = 4~rL 3. ~ n [ n J  n - (2n - 1)Jn_ 1 + (n  -- 1)Jn_2] (A.3) 

where  Jn is the k n o w n  integral  7 

Jn =fo~176 1 - e - t ) n d t / t 2  

= ~ ( - 1 ) ~ k ( k ) l n k  
k=2 

(A.4) 

6 See Ref. 29a; for polar systems the problem of the factorization of n-graphs into a product of 
irreducible components has been investigated in Ref. 29b. However, these authors do not 
solve this problem completely because they do not study the absolute convergence of the 
irreducible components. See also Ref. 30. 

7See Ref. 32, Formula 3.411.20. In this formula and in the preceding one (3.411.19), the 
combinatorial factor (~) is defined to be equal to n(n - 1) - �9 �9 (n - k + 1). We have checked 
these formulas, and it turns out that (~) is in fact the usual combinatorial factor (k!) In - 
(n - 1) �9 �9 �9 (n - k + 1). Indeed it arises from the expansion of (1 - e- t)  ~ by means of the 
binomial formula. 
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Table III. Value of the Integral 1 n = f lC(r) [  n dr, for Various Values of n. C ( r )  
Denotes the Coulomb Line, I.e., C ( r )  = exp(- L / r )  - 1. I n Has Been Computed 

Numerically for n Nonlnteger 

n 3 3.5 4 4.5 5 5.5 

765 

~ / 4 ~ L  3 ~ 1.40169 0.557296 0.316070 0.210152 0.153170 

n 6 6.5 7 7.5 8 

~ / 4 ~ L  3 0.118537 0.0956848 0.0796831 0.0679633 0.0590715 

n 8.5 9 9.5 10 

I J 4 ~ L  3 0.0521314 0.0465868 0.0420701 0.0383292 0 
i 

with (~) = ( k ! ) - ln (n  - 1) �9 �9 �9 (n  - k + 1). By c o m b i n i n g  (A.4) a n d  (A.3), 

we o b t a i n  

i 4 /4qrL  3 = 2 (  - 2 7 1 n 3 +  441n2) 3 
15/4~rL 3 = ~ (  - 2 5 1 n 5 -  5 4 1 n 3 +  1441n2)  

16/4~rL 3= - 1 2 5 1 n 5 -  5 4 1 n 3 +  3 7 6 1 n 2  

I7 /4r  - 4 9 1 n 7 -  3 7 5 1 n 5 +  8 1 1 n 3 +  8801n2)  

18/4~rL 3 = _4 ( _ 343 In 7 -  875 In 5 + 567 In 3 + 2096 In 2) 
3 

i9/4~rL 3 = 3(  _ 1 3 7 2 1 n 7 -  1 7 5 0 1 n 5 +  1 6 0 2 1 n 3 +  53761n2)  

Ilo/4r 3 = ~ ( - 4116 In 7 - 3050 In 5 + 2754 In 3 + 14272 In 2) 
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